

 SciEnggJ Vol. 17 (Supplement) | 2024 466

Intent-based networking and reactive
forwarding performance comparison
on resolving multi-link failure

Galura Muhammad Suranegara*, Salwa Tasya Fathira Purba, Endah Setyowati,
and Diky Zakaria

Universitas Pendidikan Indonesia, Bandung, Indonesia

ABSTRACT

his study adopted a different approach by leveraging
forwarding mechanisms. Software-defined
networking (SDN) had two scenarios for handling
link failures: intent-based forwarding and reactive
forwarding. This research focused on comparing

intent-based forwarding and reactive forwarding in SDN-based
networks. The study tested both forwarding mechanisms on
three different topologies and deliberately disrupted one or more
links to evaluate the failure resolution capabilities. The results
indicated that intent-based forwarding excelled in recovery time,
especially in topology C used in this study, for both single-link
and multi-link scenarios. Therefore, for applications that
required high-reliability service, intent-based forwarding was
more recommended, despite having a more complex process
compared to reactive forwarding.

INTRODUCTION

Software-defined network (SDN) is a relatively new paradigm
that is assumed to be an upgraded version of the implements the
separation concept between the control plane and the data plane.

Unlike traditional computer networks that implement the control
plane and data plane within the same device, making it difficult
to configure. Therefore, SDN is assumed to make it easier for
network developers to configure and conduct experiments on
new networks or protocols (Thirupathi et al. 2019). SDN could
be managed through a controller for controlling the traffic
operation of some systems.

The controller in the context of SDN is software that acts as the
brain of the network, running on a server. The controller is
responsible for managing policies and traffic flows across the
network by communicating with the hardware infrastructure
through an Application Programming Interface (API) (Zhu et al.
2020). In the SDN model, the controller receives instructions
from applications and translates them into commands that can
be understood by the hardware.

The presence of an SDN controller could decrease manual
configuration for each device and simplify configuration for
complex topologies (Zhu et al. 2020). The integrated system
between SDN and controller could support network
configuration and enable users to perform real-time monitoring,
minimizing network routing steps and protocol switching. One
of the most used SDN controllers is the Open Network
Operating System (ONOS). ONOS is an open-source SDN
under the Apache 2.0 license, designed to provide high
scalability, with scale-out capabilities, and to demonstrate good

T

 ARTICLE

*Corresponding author
Email Address: galurams@upi.edu
Date received: 10 September 2024
Date revised: 11 November 2024
Date accepted: 30 December 2024
DOI: https://doi.org/10.54645/202417SupOMK-17

KEYWORDS

Citizen science project, Digital encyclopedia, Mammals,
Species literacy

https://doi.org/10.54645/202417SupOMK-17

Vol. 17 (Supplement) | 2024 SciEnggJ 467

performance in a network program. The specific target audience
for ONOS is service providers and mission-critical networks
(Akbar and Basuki 2022).

Although SDN-based networks are an upgraded version of
traditional networks, they are not free from disruptions, such as
link failures. Link failures can occur due to unbalanced network
loads (Setiawan and Farosh 2023). High traffic density in a
system also increases the possibility of link failure during packet
transmission. Therefore, a system could be considered as ideal
if it has both traffic management mechanisms and failure
management scenarios (Alsaeedi et al. 2019). Therefore,
addressing link failures in SDN networks is crucial, as it affects
the reliability and performance of the network.

This issue can occur in any network, even in SDN-based
networks. Researchers around the world have tried to address
this problem, each with its weaknesses and limitations. Some
studies tackle the link failure problem by adjusting the
placement of SDN controllers. In addition, link failures have
also been addressed by using middleboxes as a traffic
engineering-based solution (Ibrahim et al. 2023). This study
employs a different approach by utilizing intent-based and
reactive forwarding techniques. SDN has two standard
forwarding mechanisms that provide failure management and
traffic management mechanisms: proactive forwarding and
reactive forwarding. ONOS controller also implements intent-
based networking to develop the reactive forwarding method,
known as intent-based networking (Abbas et al. 2021). Intent-
based networking includes several types, such as host-to-host
intent, point-to-point intent, multipoint-to-single-point, and
others (Monika et al. 2020).

Unlike proactive forwarding, in a reactive forwarding scenario,
alternative paths are only created if there is a request for a new
entry from the user. The decision to forward a packet is made
when a series of new data packets is received by the switch
(Akbar and Basuki 2022). The switch sends a copy of the header
of the packet to the controller, which then installs rules to
redirect the switch in forwarding the next packets on that flow.
This allows for flexibility in flow redirection policies without
needing to know the initial traffic. Additional input flows can
only be added if necessary to reduce the load on the switch
(Bianco et al. 2017). Previous research regarding the link failure
recovery mechanism in SDN, focused on rerouting techniques
to find the response to a single link failure through Fast Failover
(FF) (Wang et al. 2023; Petale 2020). Only a few studies
describe the performance analysis results of the routing
mechanisms provided by the ONOS Controller. Therefore, we
conducted this research to assist the developers in determining
the services that should be used in the systems they build. This
research aims to analyze the performance of reactive forwarding
and host-to-host intent-based forwarding in handling link
failures and having low recovery times. The reliability in
handling link failures was evaluated based on the time taken by
the forwarding methods to recover and continue the packet
transmission after one of the links failed.

MATERIALS AND METHODS

This research employed a quantitative method with a
comparative approach. The research obtained quantitative data
in the form of calculations for QoS parameters and recovery time
parameters. The obtained data were compared between the two
variables: reactive forwarding and intent-based forwarding. The
results of these calculations and comparisons served as a
benchmark to determine which mechanism exhibited the highest
performance and scalability. The testing scenario is shown in
Figure 1.

Figure 1: Testing scenario

After configuring the system environment, it is necessary to
check whether the system is functioning properly. Subsequently,
a link failure scenario can be executed on one or more links used
in the topology during data transmission. This yielded
performance data for a forwarding mechanism in handling link
failures, which then be analyzed and compared.

The testing was conducted on a PC with the following
specifications:

(i) Core Processing Unit (CPU): Ryzen 7 5800x

(ii) Random Access Memory (RAM): 32 GB

(iii) Network Interface Card (NIC): 1 Gbps

A system was built under the Ubuntu Linux Server operating
system version 16.04.3 (Xenial). This system included Java JDK
8, ONOS Controller version 1.15.0, Mininet version 2.0.0,
Iperf3 version 3.0, and Wireshark version 4.4.0. Java JDK 8 was
utilized to develop, compile, and run Java applications,
providing essential tools such as the compiler, runtime
environment, and libraries. The ONOS Controller version 1.15.0
was tested for stability and compatibility in running intent-based
forwarding. Mininet version 2.0.0 served as an emulator to
simulate the network topology. Iperf3 version 3.0 was employed
to measure network bandwidth and performance by testing the
throughput between a server and a client. Finally, Wireshark
version 4.4.0 was used for capturing and inspecting data packets
in real-time to diagnose network issues and monitor traffic.

In this research, the entire system was running on Ubuntu Linux
Server 16.04.3 (Xenial) operating on a Virtual Machine. To
build the system environment, installations of Java 8, Mininet,

 SciEnggJ Vol. 17 (Supplement) | 2024 468

ONOS controller, Iperf3, and Wireshark were required. The
system environment built is shown in Figure 2.

Figure 2: System design

Java is necessary to support the operation of the ONOS
controller and intent programming. Mininet is an open-source
network simulation software used to create virtual network
environments. With Mininet, users could create network
topologies consisting of virtual hosts, switches, and routers
within a Linux operating system. The goal was to test and
develop new network applications and protocols without the
need for actual physical hardware.

ONOS is an open-source SDN platform under the Apache 2.0
license, designed to provide high scalability, scale-out
capabilities, and demonstrate good performance in network
programs. The specific targets of ONOS are service providers
and mission-critical networks. Iperf3 is a tool for distributing
traffic within a network system, making it useful for testing
system reliability. Wireshark is also needed as a tool to capture
packet transmission and also to assist in monitoring and
analyzing packet traffic in the network.

This research used three different custom topologies, each
consisting of 2 hosts and a varying number of switches.
Topology A had 7 switches arranged as shown in Figure 3,
consisting of 9 nodes and 20 links. Topology B had 9 switches
arranged as shown in Figure 4, consisting of 11 nodes and 24
links. Topology C had 12 switches arranged as shown in Figure
5, consisting of 14 nodes and 28 links.

Figure 3: Topology A

Figure 4: Topology B

Figure 5: Topology C

The difference in the topology schemes and the use of varying
numbers of switches aims to examine the performance of both
forwarding mechanisms, namely reactive forwarding and intent-
based reactive forwarding, to see if they are affected by the
complexity of the topology in managing traffic and handling link
failures.

A forwarding mechanism can be considered reliable when it can
handle link failures within a built system. Therefore, to measure

Vol. 17 (Supplement) | 2024 SciEnggJ 469

the reliability of the forwarding mechanism in handling link
failures, recovery time testing is used. This monitored the time
required by a forwarding mechanism to find an alternative path
when a link failure occurs. The testing scenario aimed to
evaluate the performance of the forwarding mechanism in
handling link failures, as shown in Figure 6.

Figure 6: Scenario in simulating link failure

The recovery time testing was conducted using two methods:

single-link disconnection and multi-link disconnection, which
simultaneously disconnected three links. During testing, ICMP
packets were sent through the ping application with 10
repetitions for each topology simulation.

To support packet transmission monitoring during link
disconnection, two interfaces in Wireshark were required. The
first interface used was the 'any' interface, recording all
transmission activities within the topology. The second interface
was focused on one specific interface that the packets traversed
after the link disconnection.

30 ICMP packets were sent, and at the 10th ICMP packet, the
link was disconnected. The forwarding mechanism determined
an alternative path, causing a route change. The first incoming
packet was visible in the Wireshark application on the
previously specified interface. The recovery time was measured
by subtracting the time of the last 10th sequence packet sent
from the time of the first packet received after the link
disconnection.

For the single link disconnection, the link to be disconnected
was s1-eth2. Considered in each topology, s1-eth2 was one of
the default links traversed during packet transmission. It was
important to first observe the packet transmission process under
normal conditions and during the link disconnection to
determine which alternative path was used. This was done to
identify the interface that was used for monitoring the packets
that entered first after the link disconnection.

Otherwise, for the multi-link disconnection, three links were
disconnected simultaneously. This was intended as further proof
to measure the reliability of the forwarding mechanism in
finding alternative paths after the links were disconnected. A
bash script was used to facilitate the simultaneous disconnection
of multiple links.

RESULTS AND DISCUSSION

Single Link Failure

Topology A
In topology A, measurements are conducted in Wireshark
through the 'any' interface and the s6-eth2 interface. The s6-eth2
interface is chosen because when the link is disconnected, the
first packet passes through switch 6 port 2. After conducting link
failure for the intent-based networking and reactive forwarding,
the recovery time values are shown in Figure 7.

Figure 7: Comparison of recovery time test results for single link failure on topology A

 SciEnggJ Vol. 17 (Supplement) | 2024 470

The average recovery time required for intent-based networking
to handle link failures is 1,9 seconds, while the average recovery
time for reactive forwarding is 1.02 seconds. There is no
significant difference between the two forwarding mechanisms;
however, the reactive forwarding intent shows more stable
performance across repetitions. The recovery times for reactive
forwarding are more fluctuating, with the highest recovery time
reaching nearly 6 seconds. Reactive forwarding does not require
any recovery time when a link disconnection occurs during the
3rd repetition. In contrast, intent-based networking remains

stable for around 1 second.

Topology B
In topology B, measurements are conducted in Wireshark
through the 'any' interface and the s7-eth2 interface. After
conducting link failure for the intent-based networking and
reactive forwarding in s1-eth2, the recovery time value overview
is shown in Figure 8.

Figure 8: Comparison of recovery time test results for single link failure on topology B

In this topology, intent-based forwarding still performs stable
recovery time for each repetition. Intent-based networking still
performs stable recovery time on a scale of 1 second for ten
repetitions. In the 5th and 6th repetitions, reactive forwarding
demonstrates speed in determining alternative paths when a link
failure occurs, resulting in a recovery time of less than 1 second.

Meanwhile, intent-based forwarding remains stable for 1 second
in each repetition. Indicating a longer time compared to intent-
based networking. This longer recovery time may be due to the
greater number of nodes and links in the topology compared to

topology A. The average recovery time for the reactive
forwarding intent in handling link failures is 1.02 seconds,
whereas for reactive forwarding it is 42 seconds.

Topology C
In topology C, measurements are conducted in Wireshark
through the 'any' interface and the s11-eth2 interface. After
conducting link failure for the intent-based forwarding and
reactive forwarding in s1-eth2, the recovery time value overview
is shown in Figure 9.

Figure 9: Comparison of recovery time test results for single link failure on topology C

The intent-based forwarding showed a more stable and faster
recovery time in each repetition rather than reactive forwarding.
Reactive forwarding even shows relatively high recovery times.
The average recovery time for the reactive forwarding intent is
11 seconds, whereas, for reactive forwarding, it is 48 seconds.

In handling a fairly complex topology, the reactive forwarding
intent still demonstrates stable performance in managing link
failures. Even though in the 10th repetition, the recovery time
was increased to almost 2 seconds. On the other hand, reactive

Vol. 17 (Supplement) | 2024 SciEnggJ 471

forwarding takes a longer time to find an alternative path after a
link disconnection. Thus, this test shows a significant difference
between the performance of reactive forwarding and intent-
based forwarding in managing link failures.

Multi-Link Failure

Topology A
In topology A, measurements are conducted in Wireshark
through the 'any' interface and the s6-eth3 interface. The s6-eth3
interface is chosen because when the link is disconnected, the

first packet passes through switch 6 port 3. The link to be
disconnected is s1-eth4, s1-eth2 and s6-eth2. The link to be
disconnected is selected based on the alternative paths that were
taken if the link is disconnected. Therefore, disconnecting
multiple links simultaneously reveals the final paths that were
traversed and the recovery time required for each forwarding
mechanism. After conducting link failure for the intent-based
forwarding and reactive forwarding, the recovery time value
overview is shown in Figure 10.

Figure 10: Comparison of recovery time test results for multi-link failure on topology A

In this testing scheme, reactive forwarding showed a relatively
high recovery time of 6.7 seconds in the second trial. However,
starting from the sixth to the tenth trial, the recovery time
became stable and matched the recovery time produced by the
intent-based forwarding mechanism. The average recovery time
produced by the reactive forwarding mechanism was 2.4
seconds. The intent-based forwarding mechanism produced an
average recovery time of 1.1 seconds.

The performance of the intent-based forwarding mechanism is
quite stable, only showing high recovery times in a few trials.
This could happen because the system is still learning the link
failure patterns, allowing it to produce better link failure

management.

Topology B
In topology B, measurements are conducted in Wireshark
through the 'any' interface and the s6-eth3 interface. The s5-eth4
interface is chosen because when the link is disconnected, the
first packet passes through switch 5 port 4. The link to be
disconnected is s1-eth2, s1-eth3 and s7-eth1. After conducting
link failure for the intent-based forwarding and reactive
forwarding, the recovery time value overview is shown in Figure
11.

Figure 11: Comparison of recovery time test results for multi-link failure on topology B

As the data shows, the results obtained from both forwarding
mechanisms were quite fluctuating. However, reactive
forwarding showed a high recovery time of up to 11.7 seconds
in the first trial. The highest recovery time produced by the
intent-based forwarding mechanism occurred in the sixth
repetition, almost reaching 4 seconds. However, in each
mechanism, several test results yielded relatively low recovery

times below 2 seconds. The average recovery time produced by
the intent-based forwarding mechanism was 1.8 seconds, while
reactive forwarding produced an average recovery time of 4.1
seconds.

Topology C
In topology C, measurements are conducted in Wireshark

 SciEnggJ Vol. 17 (Supplement) | 2024 472

through the 'any' interface and the s9-eth3 interface. The s9-eth3
interface is chosen because when the link is disconnected, the
first packet passes through switch 9 port 3. The link to be
disconnected is s1-eth3, s2-eth2 and s9-eth2. After conducting

link failure for the intent-based forwarding and reactive
forwarding, the recovery time value overview is shown in Figure
12.

Figure 12: Comparison of recovery time test results for multi-link failure on topology C

Based on the results of this experiment, a significant difference
can be observed. The reactive forwarding mechanism requires a
longer recovery time compared to the intent-based forwarding
mechanism. The average recovery time produced by the intent-
based forwarding mechanism was 1.6 seconds, while the
reactive forwarding mechanism produced an average recovery
time of 3.06 seconds.

This occurs because the reactive forwarding mechanism takes
longer to find an alternative path after a link failure. The
recovery time results from the intent-based forwarding
mechanism are also quite fluctuating. However, it still requires
more than 1 second to re-establish an alternative packet delivery
path after a link failure.

Discussion

Based on the test results for single link failure, intent-based
forwarding demonstrated stable recovery times. Even when the
link was disconnected in the relatively complex topology C, it
still showed good performance. In contrast, reactive forwarding
exhibited more fluctuating recovery times in the trials for each
topology. The highest recovery time produced by reactive
forwarding showed a significant difference compared to that
produced by intent-based forwarding. This difference is clear
where the recovery time generated by reactive forwarding is
higher than the recovery time generated by intent-based
forwarding.

The multi-link failure test is essentially aimed at testing the
system's reliability in finding alternative paths when multiple
transmission links are simultaneously disconnected. Unlike the
single link failure test results where intent-based forwarding
showed stable performance, in this test, intent-based forwarding
displayed quite varied recovery times. However, the highest
recovery time produced did not exceed 4 seconds. The
performance of the intent-based forwarding mechanism is quite
stable, only showing high recovery times in a few trials. This
could happen because the system is still learning the link failure
patterns, allowing it to produce better link failure management.

On the other hand, reactive forwarding produced average
recovery times of 2.4 seconds, 4.1 seconds, and 3.06 seconds.
These results are relatively high compared to the average
recovery time produced by the intent-based forwarding

mechanism, which is only around 1 second. Thus, it can be
concluded that in this test, intent-based forwarding demonstrated
better performance compared to reactive forwarding. Essentially,
reactive forwarding aims to avoid congestion by distributing
traffic evenly across available paths (Wang et al. 2023). As a
result, the complexity of the rerouting process increases in
complex topologies. In contrast, the intent-based forwarding
mechanism exhibits stable performance that is not affected by
the complexity of the topology. The time required by intent-
based forwarding to find an alternative path is faster compared
to the performance shown by reactive forwarding.

CONCLUSION

Based on the testing results for recovery time, intent-based
forwarding demonstrates a stable recovery time compared to
reactive forwarding. Even when links are disrupted in relatively
complex topologies, intent-based forwarding continues to show
good performance and significantly reduces the time needed to
find alternative paths after a link failure. This is due to the
consistency of intents in identifying network resources, namely
the hosts and their intent IDs. In contrast, reactive forwarding
exhibits more fluctuating recovery times in trials for each
topology. Additionally, the performance of reactive forwarding
is affected by the complexity of the topology. This occurs
because reactive forwarding aims to avoid path congestion by
evenly distributing traffic across available routes. As a result, the
complexity of the rerouting process increases in complex
topologies (Ali et al. 2020). This indicates a clear advantage of
using intent-based mechanisms in network services where rapid
failure recovery is crucial.

ACKNOWLEDGMENT

We would like to express our sincere gratitude to Universitas
Pendidikan Indonesia for its invaluable support in facilitating
this research. The resources, academic environment, and
encouragement provided by UPI have significantly contributed
to the completion of this study. Thank you.

Vol. 17 (Supplement) | 2024 SciEnggJ 473

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

CONTRIBUTIONS OF INDIVIDUAL AUTHORS

Galura Muhammad Suranegara is the primary contributor,
providing grant support and editing the final manuscript. Salwa
Tasya Fathira Purba conducted the majority of the experiments,
organized and presented the data, and drafted the initial
manuscript. Endah Setyowati and Diky Zakaria offered support
and provided guidance for this research.

REFERENCES

Abbas, K, Khan, TA, Afaq, M, Song, WC. Network slice

lifecycle management for 5G mobile networks: An intent-
based networking approach. IEEE Access 2021; 9, 80128-
80146.

Akbar, FS, Basuki, A. evaluasi intent-based reactive forwarding

dan reactive forwarding pada onos controller untuk pemulihan
kegagalan jaringan dalam software defined networking. Jurnal
Pengembangan Teknologi Informasi dan Ilmu Komputer
2022; 6(12), 5854-5861.

Ali J, Lee GM, Roh BH, Ryu DK, Park G. Software-defined

networking approaches for link failure recovery: A survey.
Sustainability 2020; 12(10), 4255.

Alsaeedi, M, Mohamad, MM, Al-Roubaiey, AA. Toward

adaptive and scalable OpenFlow-SDN flow control: A
survey. IEEE Access 2019; 7, 107346-107379.

Bianco A, Giaccone P, Mashayekhi R, Ullio M, Vercellone V.

Scalability of ONOS reactive forwarding applications in ISP
networks. Computer Communications 2017; 102, 130-138.

Ibrahim, A A, Hashim, F, Sali, A, Noordin, NK, Navaie, K,

Fadul, SM. Reliability-aware swarm based multi-objective
optimization for controller placement in distributed SDN
architecture. Digital Communications and Networks 2023;
10(5), 3.

Monika, P, Negara, RM, Sanjoyo, DD. Performance analysis of

software defined network using intent monitor and reroute
method on ONOS controller. Bulletin of Electrical
Engineering and Informatics 2020; 9(5), 2065-2073.

Petale, S, Thangaraj, J. Link failure recovery mechanism in

software defined networks. IEEE Journal on Selected Areas in
Communications 2020; 38(7), 1285-1292.

Setiawan Y, Farosh GM. Analisis load balancing round robin

dan fault detection pada software defined network berbasis
P4. Indonesian Journal of Computer Science 2023; 12(2), 5.

Thirupathi V, Sandeep CH, Kumar N, Kumar PP. A

comprehensive review on SDN architecture, applications and
major benefits of SDN. International Journal of Advanced
Science and Technology 2019; 28(20), 607-614.

Wang, Z, Li, Y, Guan, S. A robust‐link controller placement

model for large‐scale software defined networks. Transactions
on Emerging Telecommunications Technologies 2023; 34(6),
4765.

Yin, H, Chen, J. A cross entropy-based approach to controller
placement problem with link failures in SDN. Journal of
Circuits, Systems and Computers 2023; 32(14), 2350240.

Zhu L, Karim MM, Sharif K, Xu, C Li, F Du X, Guizani, M.

SDN controllers: A comprehensive analysis and performance
evaluation study. ACM Computing Surveys (CSUR)
2020; 53(6), 1-40.

