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ABSTRACT 
 
 

his study adopted a different approach by leveraging 
forwarding mechanisms. Software-defined 
networking (SDN) had two scenarios for handling 
link failures: intent-based forwarding and reactive 
forwarding. This research focused on comparing 

intent-based forwarding and reactive forwarding in SDN-based 
networks. The study tested both forwarding mechanisms on 
three different topologies and deliberately disrupted one or more 
links to evaluate the failure resolution capabilities. The results 
indicated that intent-based forwarding excelled in recovery time, 
especially in topology C used in this study, for both single-link 
and multi-link scenarios. Therefore, for applications that 
required high-reliability service, intent-based forwarding was 
more recommended, despite having a more complex process 
compared to reactive forwarding. 
  
 
INTRODUCTION 
 
Software-defined network (SDN) is a relatively new paradigm 
that is assumed to be an upgraded version of the implements the 
separation concept between the control plane and the data plane. 

Unlike traditional computer networks that implement the control 
plane and data plane within the same device, making it difficult 
to configure. Therefore, SDN is assumed to make it easier for 
network developers to configure and conduct experiments on 
new networks or protocols (Thirupathi et al. 2019). SDN could 
be managed through a controller for controlling the traffic 
operation of some systems.  
 
The controller in the context of SDN is software that acts as the 
brain of the network, running on a server. The controller is 
responsible for managing policies and traffic flows across the 
network by communicating with the hardware infrastructure 
through an Application Programming Interface (API) (Zhu et al. 
2020). In the SDN model, the controller receives instructions 
from applications and translates them into commands that can 
be understood by the hardware. 
 
The presence of an SDN controller could decrease manual 
configuration for each device and simplify configuration for 
complex topologies (Zhu et al. 2020). The integrated system 
between SDN and controller could support network 
configuration and enable users to perform real-time monitoring,  
minimizing network routing steps and protocol switching. One 
of the most used SDN controllers is the Open Network 
Operating System (ONOS).  ONOS is an open-source SDN 
under the Apache 2.0 license, designed to provide high 
scalability, with scale-out capabilities, and to demonstrate good 
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performance in a network program. The specific target audience 
for ONOS is service providers and mission-critical networks 
(Akbar and Basuki 2022). 
 
Although SDN-based networks are an upgraded version of 
traditional networks, they are not free from disruptions, such as 
link failures. Link failures can occur due to unbalanced network 
loads (Setiawan and Farosh 2023). High traffic density in a 
system also increases the possibility of link failure during packet 
transmission. Therefore, a system could be considered as ideal 
if it has both traffic management mechanisms and failure 
management scenarios (Alsaeedi et al. 2019). Therefore, 
addressing link failures in SDN networks is crucial, as it affects 
the reliability and performance of the network. 
 
This issue can occur in any network, even in SDN-based 
networks. Researchers around the world have tried to address 
this problem, each with its weaknesses and limitations. Some 
studies tackle the link failure problem by adjusting the 
placement of SDN controllers. In addition, link failures have 
also been addressed by using middleboxes as a traffic 
engineering-based solution (Ibrahim et al. 2023). This study 
employs a different approach by utilizing intent-based and 
reactive forwarding techniques. SDN has two standard 
forwarding mechanisms that provide failure management and 
traffic management mechanisms: proactive forwarding and 
reactive forwarding. ONOS controller also implements intent-
based networking to develop the reactive forwarding method, 
known as intent-based networking (Abbas et al. 2021). Intent-
based networking includes several types, such as host-to-host 
intent, point-to-point intent, multipoint-to-single-point, and 
others (Monika et al. 2020).  
 
Unlike proactive forwarding, in a reactive forwarding scenario, 
alternative paths are only created if there is a request for a new 
entry from the user. The decision to forward a packet is made 
when a series of new data packets is received by the switch 
(Akbar and Basuki 2022). The switch sends a copy of the header 
of the packet to the controller, which then installs rules to 
redirect the switch in forwarding the next packets on that flow. 
This allows for flexibility in flow redirection policies without 
needing to know the initial traffic. Additional input flows can 
only be added if necessary to reduce the load on the switch 
(Bianco et al. 2017). Previous research regarding the link failure 
recovery mechanism in SDN, focused on rerouting techniques 
to find the response to a single link failure through Fast Failover 
(FF) (Wang et al. 2023; Petale 2020). Only a few studies 
describe the performance analysis results of the routing 
mechanisms provided by the ONOS Controller. Therefore, we 
conducted this research to assist the developers in determining 
the services that should be used in the systems they build. This 
research aims to analyze the performance of reactive forwarding 
and host-to-host intent-based forwarding in handling link 
failures and having low recovery times. The reliability in 
handling link failures was evaluated based on the time taken by 
the forwarding methods to recover and continue the packet 
transmission after one of the links failed. 
 
 
MATERIALS AND METHODS 
 
This research employed a quantitative method with a 
comparative approach. The research obtained quantitative data 
in the form of calculations for QoS parameters and recovery time 
parameters. The obtained data were compared between the two 
variables: reactive forwarding and intent-based forwarding. The 
results of these calculations and comparisons served as a 
benchmark to determine which mechanism exhibited the highest 
performance and scalability. The testing scenario is shown in 
Figure 1. 

 

 
Figure 1: Testing scenario 

After configuring the system environment, it is necessary to 
check whether the system is functioning properly. Subsequently, 
a link failure scenario can be executed on one or more links used 
in the topology during data transmission. This yielded 
performance data for a forwarding mechanism in handling link 
failures, which then be analyzed and compared. 
 
The testing was conducted on a PC with the following 
specifications:   
 

(i)  Core Processing Unit (CPU): Ryzen 7 5800x 
 

(ii)  Random Access Memory (RAM): 32 GB 
 

(iii)  Network Interface Card (NIC): 1 Gbps 
 
A system was built under the Ubuntu Linux Server operating 
system version 16.04.3 (Xenial). This system included Java JDK 
8, ONOS Controller version 1.15.0, Mininet version 2.0.0, 
Iperf3 version 3.0, and Wireshark version 4.4.0. Java JDK 8 was 
utilized to develop, compile, and run Java applications, 
providing essential tools such as the compiler, runtime 
environment, and libraries. The ONOS Controller version 1.15.0 
was tested for stability and compatibility in running intent-based 
forwarding. Mininet version 2.0.0 served as an emulator to 
simulate the network topology. Iperf3 version 3.0 was employed 
to measure network bandwidth and performance by testing the 
throughput between a server and a client. Finally, Wireshark 
version 4.4.0 was used for capturing and inspecting data packets 
in real-time to diagnose network issues and monitor traffic. 
 
In this research, the entire system was running on Ubuntu Linux 
Server 16.04.3 (Xenial) operating on a Virtual Machine. To 
build the system environment, installations of Java 8, Mininet, 
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ONOS controller, Iperf3, and Wireshark were required. The 
system environment built is shown in Figure 2. 
 

 
Figure 2: System design 

Java is necessary to support the operation of the ONOS 
controller and intent programming. Mininet is an open-source 
network simulation software used to create virtual network 
environments. With Mininet, users could create network 
topologies consisting of virtual hosts, switches, and routers 
within a Linux operating system. The goal was to test and 
develop new network applications and protocols without the 
need for actual physical hardware. 
 
ONOS is an open-source SDN platform under the Apache 2.0 
license, designed to provide high scalability, scale-out 
capabilities, and demonstrate good performance in network 
programs. The specific targets of ONOS are service providers 
and mission-critical networks. Iperf3 is a tool for distributing 
traffic within a network system, making it useful for testing 
system reliability. Wireshark is also needed as a tool to capture 
packet transmission and also to assist in monitoring and 
analyzing packet traffic in the network. 
 
This research used three different custom topologies, each 
consisting of 2 hosts and a varying number of switches. 
Topology A had 7 switches arranged as shown in Figure 3, 
consisting of 9 nodes and 20 links. Topology B had 9 switches 
arranged as shown in Figure 4, consisting of 11 nodes and 24 
links. Topology C had 12 switches arranged as shown in Figure 
5, consisting of 14 nodes and 28 links. 
 

 
Figure 3: Topology A 

 
Figure 4: Topology B 

 
Figure 5: Topology C 

The difference in the topology schemes and the use of varying 
numbers of switches aims to examine the performance of both 
forwarding mechanisms, namely reactive forwarding and intent-
based reactive forwarding, to see if they are affected by the 
complexity of the topology in managing traffic and handling link 
failures. 
 
A forwarding mechanism can be considered reliable when it can 
handle link failures within a built system. Therefore, to measure 
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the reliability of the forwarding mechanism in handling link 
failures, recovery time testing is used. This monitored the time 
required by a forwarding mechanism to find an alternative path 
when a link failure occurs. The testing scenario aimed to 
evaluate the performance of the forwarding mechanism in 
handling link failures, as shown in Figure 6. 
 

 
Figure 6: Scenario in simulating link failure 

The recovery time testing was conducted using two methods: 

single-link disconnection and multi-link disconnection, which 
simultaneously disconnected three links. During testing, ICMP 
packets were sent through the ping application with 10 
repetitions for each topology simulation.  
 
To support packet transmission monitoring during link 
disconnection, two interfaces in Wireshark were required. The 
first interface used was the 'any' interface, recording all 
transmission activities within the topology. The second interface 
was focused on one specific interface that the packets traversed 
after the link disconnection. 
 
30 ICMP packets were sent, and at the 10th ICMP packet, the 
link was disconnected. The forwarding mechanism determined 
an alternative path, causing a route change. The first incoming 
packet was visible in the Wireshark application on the 
previously specified interface. The recovery time was measured 
by subtracting the time of the last 10th sequence packet sent 
from the time of the first packet received after the link 
disconnection. 
 
For the single link disconnection, the link to be disconnected 
was s1-eth2. Considered in each topology, s1-eth2 was one of 
the default links traversed during packet transmission. It was 
important to first observe the packet transmission process under 
normal conditions and during the link disconnection to 
determine which alternative path was used. This was done to 
identify the interface that was used for monitoring the packets 
that entered first after the link disconnection. 
 
Otherwise, for the multi-link disconnection, three links were 
disconnected simultaneously. This was intended as further proof 
to measure the reliability of the forwarding mechanism in 
finding alternative paths after the links were disconnected. A 
bash script was used to facilitate the simultaneous disconnection 
of multiple links. 
 
 
RESULTS AND DISCUSSION 
 
Single Link Failure 
 
Topology A 
In topology A, measurements are conducted in Wireshark 
through the 'any' interface and the s6-eth2 interface. The s6-eth2 
interface is chosen because when the link is disconnected, the 
first packet passes through switch 6 port 2. After conducting link 
failure for the intent-based networking and reactive forwarding, 
the recovery time values are shown in Figure 7. 
 

 
Figure 7: Comparison of recovery time test results for single link failure on topology A



 
 

                                                                         SciEnggJ                      Vol. 17 (Supplement) | 2024 470 

The average recovery time required for intent-based networking 
to handle link failures is 1,9 seconds, while the average recovery 
time for reactive forwarding is 1.02 seconds. There is no 
significant difference between the two forwarding mechanisms; 
however, the reactive forwarding intent shows more stable 
performance across repetitions. The recovery times for reactive 
forwarding are more fluctuating, with the highest recovery time 
reaching nearly 6 seconds. Reactive forwarding does not require 
any recovery time when a link disconnection occurs during the 
3rd repetition. In contrast, intent-based networking remains 

stable for around 1 second. 
 
Topology B 
In topology B, measurements are conducted in Wireshark 
through the 'any' interface and the s7-eth2 interface. After 
conducting link failure for the intent-based networking and 
reactive forwarding in s1-eth2, the recovery time value overview 
is shown in Figure 8. 
 

 
Figure 8: Comparison of recovery time test results for single link failure on topology B

In this topology, intent-based forwarding still performs stable 
recovery time for each repetition. Intent-based networking still 
performs stable recovery time on a scale of 1 second for ten 
repetitions. In the 5th and 6th repetitions, reactive forwarding 
demonstrates speed in determining alternative paths when a link 
failure occurs, resulting in a recovery time of less than 1 second.  
 
Meanwhile, intent-based forwarding remains stable for 1 second 
in each repetition. Indicating a longer time compared to intent-
based networking. This longer recovery time may be due to the 
greater number of nodes and links in the topology compared to 

topology A. The average recovery time for the reactive 
forwarding intent in handling link failures is 1.02 seconds, 
whereas for reactive forwarding it is 42 seconds. 
 
Topology C 
In topology C, measurements are conducted in Wireshark 
through the 'any' interface and the s11-eth2 interface. After 
conducting link failure for the intent-based forwarding and 
reactive forwarding in s1-eth2, the recovery time value overview 
is shown in Figure 9. 
 

 
Figure 9: Comparison of recovery time test results for single link failure on topology C

The intent-based forwarding showed a more stable and faster 
recovery time in each repetition rather than reactive forwarding. 
Reactive forwarding even shows relatively high recovery times. 
The average recovery time for the reactive forwarding intent is 
11 seconds, whereas, for reactive forwarding, it is 48 seconds.  

 
In handling a fairly complex topology, the reactive forwarding 
intent still demonstrates stable performance in managing link 
failures. Even though in the 10th repetition, the recovery time 
was increased to almost 2 seconds. On the other hand, reactive 
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forwarding takes a longer time to find an alternative path after a 
link disconnection. Thus, this test shows a significant difference 
between the performance of reactive forwarding and intent-
based forwarding in managing link failures. 
 
Multi-Link Failure 
 
Topology A 
In topology A, measurements are conducted in Wireshark 
through the 'any' interface and the s6-eth3 interface. The s6-eth3 
interface is chosen because when the link is disconnected, the 

first packet passes through switch 6 port 3. The link to be 
disconnected is s1-eth4, s1-eth2 and s6-eth2. The link to be 
disconnected is selected based on the alternative paths that were 
taken if the link is disconnected. Therefore, disconnecting 
multiple links simultaneously reveals the final paths that were 
traversed and the recovery time required for each forwarding 
mechanism. After conducting link failure for the intent-based 
forwarding and reactive forwarding, the recovery time value 
overview is shown in Figure 10. 
 

 
Figure 10: Comparison of recovery time test results for multi-link failure on topology A

In this testing scheme, reactive forwarding showed a relatively 
high recovery time of 6.7 seconds in the second trial. However, 
starting from the sixth to the tenth trial, the recovery time 
became stable and matched the recovery time produced by the 
intent-based forwarding mechanism. The average recovery time 
produced by the reactive forwarding mechanism was 2.4 
seconds. The intent-based forwarding mechanism produced an 
average recovery time of 1.1 seconds.  
 
The performance of the intent-based forwarding mechanism is 
quite stable, only showing high recovery times in a few trials. 
This could happen because the system is still learning the link 
failure patterns, allowing it to produce better link failure 

management. 
 
Topology B 
In topology B, measurements are conducted in Wireshark 
through the 'any' interface and the s6-eth3 interface. The s5-eth4 
interface is chosen because when the link is disconnected, the 
first packet passes through switch 5 port 4. The link to be 
disconnected is s1-eth2, s1-eth3 and s7-eth1. After conducting 
link failure for the intent-based forwarding and reactive 
forwarding, the recovery time value overview is shown in Figure 
11. 
 

 
Figure 11: Comparison of recovery time test results for multi-link failure on topology B

As the data shows, the results obtained from both forwarding 
mechanisms were quite fluctuating. However, reactive 
forwarding showed a high recovery time of up to 11.7 seconds 
in the first trial. The highest recovery time produced by the 
intent-based forwarding mechanism occurred in the sixth 
repetition, almost reaching 4 seconds. However, in each 
mechanism, several test results yielded relatively low recovery 

times below 2 seconds. The average recovery time produced by 
the intent-based forwarding mechanism was 1.8 seconds, while 
reactive forwarding produced an average recovery time of 4.1 
seconds. 
 
Topology C 
In topology C, measurements are conducted in Wireshark 
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through the 'any' interface and the s9-eth3 interface. The s9-eth3 
interface is chosen because when the link is disconnected, the 
first packet passes through switch 9 port 3. The link to be 
disconnected is s1-eth3, s2-eth2 and s9-eth2. After conducting 

link failure for the intent-based forwarding and reactive 
forwarding, the recovery time value overview is shown in Figure 
12. 
 

 
Figure 12: Comparison of recovery time test results for multi-link failure on topology C

Based on the results of this experiment, a significant difference 
can be observed. The reactive forwarding mechanism requires a 
longer recovery time compared to the intent-based forwarding 
mechanism. The average recovery time produced by the intent-
based forwarding mechanism was 1.6 seconds, while the 
reactive forwarding mechanism produced an average recovery 
time of 3.06 seconds. 
 
This occurs because the reactive forwarding mechanism takes 
longer to find an alternative path after a link failure. The 
recovery time results from the intent-based forwarding 
mechanism are also quite fluctuating. However, it still requires 
more than 1 second to re-establish an alternative packet delivery 
path after a link failure. 
 
Discussion 
 
Based on the test results for single link failure, intent-based 
forwarding demonstrated stable recovery times. Even when the 
link was disconnected in the relatively complex topology C, it 
still showed good performance. In contrast, reactive forwarding 
exhibited more fluctuating recovery times in the trials for each 
topology. The highest recovery time produced by reactive 
forwarding showed a significant difference compared to that 
produced by intent-based forwarding. This difference is clear 
where the recovery time generated by reactive forwarding is 
higher than the recovery time generated by intent-based 
forwarding. 
 
The multi-link failure test is essentially aimed at testing the 
system's reliability in finding alternative paths when multiple 
transmission links are simultaneously disconnected. Unlike the 
single link failure test results where intent-based forwarding 
showed stable performance, in this test, intent-based forwarding 
displayed quite varied recovery times. However, the highest 
recovery time produced did not exceed 4 seconds. The 
performance of the intent-based forwarding mechanism is quite 
stable, only showing high recovery times in a few trials. This 
could happen because the system is still learning the link failure 
patterns, allowing it to produce better link failure management. 
 
On the other hand, reactive forwarding produced average 
recovery times of 2.4 seconds, 4.1 seconds, and 3.06 seconds. 
These results are relatively high compared to the average 
recovery time produced by the intent-based forwarding 

mechanism, which is only around 1 second. Thus, it can be 
concluded that in this test, intent-based forwarding demonstrated 
better performance compared to reactive forwarding. Essentially, 
reactive forwarding aims to avoid congestion by distributing 
traffic evenly across available paths (Wang et al. 2023). As a 
result, the complexity of the rerouting process increases in 
complex topologies. In contrast, the intent-based forwarding 
mechanism exhibits stable performance that is not affected by 
the complexity of the topology. The time required by intent-
based forwarding to find an alternative path is faster compared 
to the performance shown by reactive forwarding. 
 
 
CONCLUSION 
 
Based on the testing results for recovery time, intent-based 
forwarding demonstrates a stable recovery time compared to 
reactive forwarding. Even when links are disrupted in relatively 
complex topologies, intent-based forwarding continues to show 
good performance and significantly reduces the time needed to 
find alternative paths after a link failure. This is due to the 
consistency of intents in identifying network resources, namely 
the hosts and their intent IDs. In contrast, reactive forwarding 
exhibits more fluctuating recovery times in trials for each 
topology. Additionally, the performance of reactive forwarding 
is affected by the complexity of the topology. This occurs 
because reactive forwarding aims to avoid path congestion by 
evenly distributing traffic across available routes. As a result, the 
complexity of the rerouting process increases in complex 
topologies (Ali et al. 2020). This indicates a clear advantage of 
using intent-based mechanisms in network services where rapid 
failure recovery is crucial. 
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